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An ability to analyze the geometrodynamic degrees of freedom and initial-data 
formulation is central to the canonical quantization of gravity. In the metric theory 
of gravity York provided the most powerful technique to analyze the dynamic 
degrees of freedom and to solve the initial-data problem. In this paper we extend 
York's analysis to tetrad gravity. Such an extension is necessary for the 
quantization of gravity when coupled to a half-integer-spin field. We present a 
comparative analysis of the geometric information carried by (1) a 3-metric of 
an initial hypersurface and (2) the spacelike triad of a time-gauged tetrad. We 
apply the tetrad initial-data formulation to Ashtekar's connection variables, and 
provide a comparison with other alternative choices of canonical tetrad variables. 

1. INTRODUCTION 

An ability to analyze the geometrodynamic degrees of freedom and the 
initial-data formulation in general relativity is a key prerequisite for canonical 
quantum gravity. Without such an analysis there is no way to avoid conceptual 
difficulties in formulating quantum geometrodynamics (Gerlach, 1969; 
Kheyfets and Miller, 1995). 

The most powerful approach to the initial-data formulation in metric 
gravity was put forward by J. York in the early seventies (York, 1971, 1972a,b, 
1973). The strength of York's procedure is based on the theory of conformally 
invariant orthogonal decomposition of symmetric tensors on Riemannian 3- 
manifolds. The significance of this decomposition theory for symmetric ten- 
sors is similar tO the significance of the Hodge theory for differential forms. 
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In recent years more attention has been focused on tetrad-based gravity 
quantization rather than on metric-based quantizations. This research direction 
includes Ashtekar's connection representation of general relativity, which 
seems to have made some advances toward developing the quantum theory 
of gravity (Ashtekar, 1994). A tetrad formulation of the initial value problem 
can also be useful and necessary when the gravity field source is a half- 
integer-spin matter field. It is for these reasons we have undertaken our 
investigation aimed at extending York's solution of the initial-data problem 
to the tetrad formalism. 

Our application of York's metric procedure to the tetrad formalism is 
achieved via (l) a careful inspection of the spacelike triad as a carrier of 
geometric information, and (2) a comparison of the ways in which geometric 
information is stored in the triad vis ~ vis the 3-metric. We describe the 
results of this inspection in Section 3, emphasizing that the triad and the 3- 
metric carry geometric information in similar fashions. In particular, we 
describe a procedure of separating the scale factor from the conformal 3- 
geometry in the triad description. We find that rescaling the triad is equivalent 
to rescaling the 3-metric induced by the triad. 

An inspection of the Gauss (gauge) constraint of the tetrad formalism 
shows that this constraint admits an explicit solution. This solution allows 
one to reduce the rest of the tetrad-based initial-data problem (i.e., solving 
the vector and Hamiltonian constraints) to solving the initial-data problem 
of the metric formulation (the 3-metric being induced by the triad). 

Our final conclusion is that York's extrinsic time approach can ordinarily 
be extended to the tetrad formalism, and to Ashtekar's variables in particular. 
Furthermore, such an extension involves a minimal change in the manipula- 
tions as compared to the standard metric formalism. 

In Section 2 we provide a brief review of York's procedure in the metric 
formulation. Section 3 analyzes the triad as a carrier of geometric information 
and compares it with the 3-metric. Section 4 extends York's approach to time- 
gauged tetrads. Section 5 discusses several alternative choices of canonical 
variables in tetrad gravity including Ashtekar's variables. Finally, Section 6 
contains a brief discussion of some alternative approaches to the initial- 
data problem. 

2. YORK'S ANALYSIS OF THE GRAVITATIONAL DEGREES OF 
FREEDOM AND INITIAL CONDITIONS IN THE METRIC 
REPRESENTATION: A REVIEW 

It is not our intention to provide here a complete description of York's 
solution of the initial-data problem, as it can be found elsewhere (York, 1971, 
1972a,b, 1973; O'Murchadha and York, 1973; Misner et al., 1973; Wheeler, 
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1988). We wish only to highlight those points of York's analysis that have 
direct parallels with our presentation of the initial-data problem of tetrad 
gravity. 

One of the ways to split the dynamics of the gravitational field into its 
evolution and initial-data formulation is to use the ADM procedure (Misner 
et  al., 1973; Amowitt et  al., 1962). This facilitates the transition from the 
Lagrangian formulation of gravitational dynamics to the constrained Hamilto- 
nian description. The procedure involves a slicing of  spacetime by spacelike 
3-dimensional hypersurfaces of  simultaneity, and identifies (1) the compo- 
nents of the 3-metric as the dynamic variables and (2) the momenta conjugate 
to the 3-metric. Evolution of the system (when passing from slice to slice) 
is determined by the Hamilton equations. In addition, four constraint equations 
are imposed on the metric and momentum within each hypersurface. It is an 
important consequence of the formalism that, once the constraints are satisfied 
on one slice, the evolution equations guarantee that they will be satisfied on 
any subsequent slice. Thus, it is sufficient to satisfy the constraint equations 
only on an initial hypersurface. 

The four constraint equations are (Misner et  al., 1973) 

I 0  when there is no flow of energy in space 
"rr~b~ b = )87r(density of flow of energy) a (2.1) 

L otherwise 

and 

where 

( i ) ~'( "lTab, gab) = g-I /2 Tr 1-12 - ~ (Tr l-I) 2 - g'J2R 

= 16"rr(density of energy) (2.2) 

["geometrodynam!c'~ 
,tr ab = | f ie idmomentum ] = gl12(gab Tr K - K ab) (2.3) 

\ conjugate to gab / 

gab is the 3-metric of the initial hypersurface, g is the determinant of gab, R 
is the curvature invariant of the 3-metric gab, K ab is the extrinsic curvature 
of the initial hypersurface as embedded in the ambient spacetime, H is just 
another notation for a'r ab, 1-12 = "rrac~cb, and K = Tr K is the trace of K ab. 

Constraint (2.1) (three equations altogether) is called the momentum 
constraint, the vector constraint, or the diffeomorphism constraint, depending 
on the context in which it is considered. Constraint (2.2) (one additional 
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equation) is commonly known as the Hamiltonian constraint. The two con- 
straints do not allow one to use arbitrary values for gab, rr "b as the initial 
data in geometrodynamics. Only a part of the components of g,,b and rr "b can 
be given freely. One function of these variables is singled out in this process 
to be used as the time variable for the dynamics. Such a function facilitates the 
slicing of spacetime by a one-parameter family of spacelike 3-hypersurfaces. It 
is associated with fixing of one 4-dimensional diffeomorphism degree of 
freedom or, equivalently, with imposing a slicing condition. Such an assign- 
ment of a time variable, a choice of the independent (true dynamic) variables, 
and the subsequent solving of the four constraint equations constitutes what 
ordinarily is identified as the initial-data problem. 

The analysis of the initial-data problem prior to the early 1970s suffered 
from an insufficient geometric understanding of the problem and could handle 
only some particular cases. The role of a slicing condition was poorly under- 
stood. A slicing condition was usually imposed implicitly via introducing 
additional symmetries or other conditions not related to the structure of the 
constraint equations. It was only in 1971-1973, after York introduced a 
complete geometric analysis of the information contained in the metric tensor 
(York, 1971, 1972a,b, 1973; O'Murchadha and York, 1973), that it became 
possible to put forward a solution of the initial-data problem that could be 
applied in generality. In what follows, when discussing the initial-data prob- 
lem, we will have in mind W-model universes, i.e., spacetimes admitting a 
unique slicing by spacelike, spatially closed hypersurfaces of Tr K = const 
within each of the hypersurfaces. For such spacetimes the value of Tr K, 
or rather 

= 2 - 1 / 2  .~g Tr H = ~Tr K (2.4) 

identifies the slicing hypersurfaces uniquely and can be used as the time 
parameter (York's extrinsic time). 

The six components g,,b of the 3-metric tensor on the initial hypersurface 
carry information concerning the internal geometry of the spacelike hypersur- 
face as well as information concerning the choice of three coordinates x ~. 
Coordinatization of a 3-slice takes three pieces of information. This leaves 
6 - 3 = 3 pieces of information to describe the 3-geometry. One can think, 
in principle, of a possibility of fixing coordinates in such a way that the metric 
g~b becomes diagonal. This picture makes it clear that in three dimensions the 
geometry is described by three scale factors (in three orthogonal directions). 
These three factors can be thought of as (1) a common scaling (one parameter 
per point) combined with (2) the conformal part of geometry (two parameters 
per point). Technically, the scale parameter of the 3-metric is split from the 
rest of information via a special factor t~4: 
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gab = ~j4(gab)base; det{(gob)base} = 1 (2.5) 

The key to York's success in solving the initial-data problem was what 
he called (York, 1973) a "conformally invariant orthogonal decomposition 
of symmetric tensors on Riemannian manifolds" into "transverse traceless," 
"conformal Killing," and "trace" parts, measuring the deformation of the 
conformal part of geometry, recoordinatization, and change of scale, 
respectively. 

For 7r ~b the transverse traceless part is expressed by 

~,~b = gU3(.trub _ �89 r II) (2.6) 

called by York the "momentum density of weight 5/3," and satisfies the 
equations 

"rra~ = 0 (traceless) (2.7) 

0 (transverse) 
when there is no flow of energy in space 

"fi'ab~b = 8"rr(density of flow of energy)" 
otherwise 

The momentum density ~ b  depends only on the conformal equivalence class 
of the metric, i.e., on 

g,,b = g - t / 3 g , b  (2.8) 

and the conditions of transversality (2.7), although they apparently contain 
the covariant derivatives determined by the Levi-Civita connection of the 3- 
metric, in fact depend only on the conformal equivalence class of the metric, 
and not on the choice of ~4. 

To set up the initial-data problem on the hypersurface determined by a 
fixed value of "r, one fixes a coordinatization on the hypersurface, which 
determines three pieces of information in g,,b, specifies freely two more pieces 
of information [conformal 3-geometry, or conformal part of (g,,h)b~] in (2.5), 
imposes an additional condition gba.~r = 1, specifies freely two pieces of 
information out of five in "rr "t', and solves the transversality equations for the 
three remaining pieces of information. The remaining two pieces of informa- 
tion are the trace part of "rr "b (determined by the choice of "r) and the scale 
factor ~, which is determined by the equation derived from the Hamilto- 
nian constraint 

8V2t~ - R ~  + M ~  - 7  + Qt~  - 3  - ~ ~ 5 ~'r-+ = 0 (2.9) 
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where V 2 stands for the Laplacian 

and 

(2.10) 

M -- g-5/3gab gca'fr~c'frba (2.11 ) 

Q--- 16"rrpbas e = 16~rOSp (2.12) 

Here V 2, R, M, and Q all refer to the basic geometry. As is well known, a 
solution of (2.9) exists, and it is unique (York, 1971) under quite generic 
conditions. 

3. TETRAD DESCRIPTION: ADDITIONAL GAUGE DEGREES 
OF FREEDOM BUT THE SAME GEOMETRY 

Various tetrad (or vierbein) formulations of gravitation theory provide 
considerable advantages in solving some particular problems and are neces- 
sary for some basic procedures, such as the direct coupling of half-integer- 
spin systems to gravity (Deser and van Niewenhuizen, 1974). The tetrad 
description of gravity appears to be of key importance in Ashtekar's represen- 
tation of general relativity, which has drawn a great deal of attention in recent 
literature. We will apply our analysis of the initial-data problem in the tetrad 
formalism to this particular case as an example. 

In the tetrad formalism, the metric tensor as a carrier of geometric 
information is replaced by four linearly independent covariant vector fields 
4 / eo. or contravariant vierbein fields 4e~ (Greek indices Ix, v are used as 
spacetime indices, while capital Latin indices /, K are tetrad, or internal, 
indices). The vierbein at a point of spacetime can be interpreted as a l-to-1 
soldering map between the tangent space of spacetime at this point and the 
internal space. Equivalently, the vierbein describes an orthonormal frame at 
each point of spacetime. The vierbeins are related to the metric of spacetime 
go.." and Minkowski metric "qIK of the internal space via 

4e~ go.,, 4evK = "I~IK (3.1) 
4e~1-11K 4e~ = go.'~ 

The vierbein m a t r i x  4e~" is not symmetric and has 16 components--6 compo- 
nents more compared to the I0 components of the metric g~.  The larger 
number of degrees of freedom in the vierbein description of the gravitational 
field is caused by the simultaneous use of two frames. In addition to the 
coordinate frame { 0o.}o.=0,...,3 used in both the metric and the tetrad formalism, 
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an additional orthonormal tetrad frame is introduced specifically in the vier- 
bein formalism, and the extra 6 degrees of freedom are responsible for the 
freedom of choice of the tetrad frame (via rotations), or gauge. 

In the transition to the 3 + 1 formalism in a way similar to the ADM 
procedure, spacetime is sliced by 3-dimensional spacelike hypersurfaces. 
Often the coordinates are chosen in such a way that x ~ is transversal to 
these hypersurfaces, while three coordinates x ~, x 2, x 3 also coordinatize the 
hypersurfaces. In this case the coordinate frame vectors 0~ = ~/c~x ~ are tangent 
to the slices and the g,,, part of the metric g ~  induces a metric of Euclidean 
signature on slices (including the initial slice). In addition, the gauge is fixed 
partially so that 4e~ = 0 (or 4e~ = 0), which means that the vierbein is picked 
in such a way that the triad of the spacelike vectors of the vierbein is tangent 
to the slices. Such a partial fixing of the local Lorentz gauge is often referred 
to as the time gauge (Henneaux et al., 1989). The transition between the 
coordinate basis on the hypersurface and the triad basis is given by a spatial 

i (and the inverse to it e~) of 4e~ and 3 • 3 submatrix e~ 

gob = Bikei ~ (3.2) 

where indices like a, b, c are coordinate indices on slices, while indices like 
i, j ,  k are triad indices (numbers with carets over them are used for numerical 
values of triad indices). 

The nine components of e / contain information determined by the choice 
of the coordinatization of the slice (three pieces of information), the choice 
of gauge, or the vierbein triad (three more pieces of information), and the 
truly geometric part of the information (9 - 3 - 3 = 3 remaining pieces of 
information). The geometric part of the information is exactly the same as 
that carried by the metric. An easy way to see this is to fix coordinates in 
such a way that the coordinate basis becomes orthogonal, and then to fix the 
gauge (turn the vierbein triad) so that the vierbein triad vectors become 
parallel to the coordinate basis vectors. Such a procedure diagonalizes the 
vierbein triad matrix and the 3-metric tensor simultaneously. Keeping in mind 
that the vierbein vectors are unit vectors [formally from (3.2)] and after fixing 
coordinates and gauge, we conclude that 

(e]) 2 = gt~; (e~) 2 = g22; (el) 2 = g33 (3.3) 

This means that the geometry described by the diagonalized vierbein triad 
matrix is contained in three scale factors per point, one for each of the 
orthogonal directions, and, by the same logic as in the previous section, is 
nothing but a combination of simple scaling and conformal geometry. 

All of the formal manipulation machinery in the tetrad representation 
can be developed in parallel with that of the metric representation, except 
there is really no need to do this. All the necessary relations can be transferred 
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to the tetrad formalism from the metric formalism by partial change of the 
basis from the coordinate frame to the triad frame ("partial" means that it is 
applied not to all indices, but only to the appropriate ones, the last being 
very easy to identify in any practical situation) and keeping in mind that the 
triad spin connection is nothing but the Levi-Civita connection of the metric 
(3.2) when all the indices are transformed to the coordinate frame. 

In some applications the orthonormal vierbein triad e / is replaced with 
a triad that is not orthonormal but conformally equivalent to e~, (i.e., the triad 

i multiplied by a scale factor depending, in general, on coordinates). The ea 

modified triad is isotropic, i.e., all three vectors at a point are of equal length, 
the last being given as a function of metric. It is easy to see that for such 
triads the analysis of information contained in the triad remains exactly the 
same as for orthonormal triads, with a trivial change in equations (3.2) 
and (3.3). 

For example, in Ashtekar's formalism (Rovelli, 1991), the densitized 
triad/~7 related to the orthonormal triad e}' as 

~'~ = v/-ge, ." (3.4) 

plays a key role (here g is the determinant of g,,b). The spin connection of 
the densitized triad is the same as the spin connection of the original triad. 
The nine degrees of freedom represented by the matrix of the densitized triad 
consist of the three coordinatization degrees of freedom, three gauge degrees 
of freedom (rotation of the densitized triad), and the three true geometric 
degrees of freedom (scale and conformal geometry). However, formulas (3.2) 
and (3.3) will be replaced with 

- i  ~k gg,,h = 8 i t E . E h  

and 

(3.5) 

(El) 2 = gg,l ,  (/~)2 = gg22, (~ )2  = gg33 (3.6) 

The way the geometric information is stored in the triad matrix is closely 
related to that in the metric. In particular, a rescaling of the geometry by the 
factor ~4, as in equation (2.4), can be equivalently expressed in terms of the 
orthonormal triad matrix as 

e / = ~2(ei)base (3.7) 

e~ = -2 a tl/ (ei)base 

or in terms of the densitized triad matrix as 

/~'/ = ~8(E~)b~,~e (3.8) 

~'~,t = i~j4(~a)bas e 
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In what follows, an important role will be played by the two-frame 
tensors (with one coordinate and one triad index) obtained from symmetric 
coordinate tensors via a transformation of one of the indices, such as, for 
instance, 

Kia = Kba eib (Kb,, = K,,b) (3.9) 

or their densitized versions. York's results concerning the conformally invari- 
ant decomposition of symmetric tensors can be used to analyze the structure 
of such tensors and, ultimately, the initial-data problem in the tetrad formula- 
tion and, in particular, Ashtekar's variables. 

4. YORK'S PROCEDURE IN TETRAD GRAVITY 

It has been shown in the previous section that the geometry of the initial- 
data problem remains essentially the same as one passes from the metric 
formulation of dynamics to its tetrad description. One of the consequences 
of this fact is that York's analysis of the gravitational degrees of freedom 
and the initial-data problem can be transferred in a straightforward way to 
the tetrad formalism. Retaining the full local Lorentz gauge freedom available 
in tetrad gravity is not essential in a discussion of the York procedure. Without 
a loss of generality we can restrict our consideration to time-gauged tetrads. 
In other words, we fix three out of six gauge parameters (Lorentz boost 
parameters) and keep three remaining gauge parameters (spatial rotations of 
the spacelike triad of a time-gauged tetrad). Canonical variables of such time- 
gauged gravity are the spatial triad components ei,, (i being a triad index and 
a being a spatial coordinate index) and their conjugate momenta ~r i". 

The full system of constraints will include three vector constraints (2.1) 
and the Hamiltonian constraint (2.2) with the 3-metric g,a, and the metric 
momentum "rr ''h expressed in terms of the canonical variables of time-gauged 
tetrad gravity as follows: 

g,,b = e i,~eit, (4.1) 

and 

In addition to the 
gauge constraints, 

1 ehi~i, ,)  ,.rr ah = -~ (e~'"ff ib + 

constraints (2.1), (2.2) there 

(4.2) 

will be three additional 

j ik =. ,ffi,, ek  a _ ,rrka e i  a = 0 (4.3) 

generated by the three remaining gauge degrees of freedom. Constraint (4.3) 
has zero right-hand side, which means that we implicitly excluded from our 
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consideration half-integer-spin matter fields. We are going to stick with this 
assumption for the remainder of this paper. 

It is easy to see that York's procedure can be transferred to the time 
gauged tetrad formulation in a rather straightforward fashion. The reasons 
for this are as follows: 

I. The vector constraints (2.1) and the Hamiltonian constraint (2.2) are 
the same as in the metric description, except that the 3-metric is determined 
by the triad via (3.2), and the covariant derivative is determined by the Levi- 
Civita connection of this metric. 

2. The gauge constraint (4.3) (which is a new element compared to the 
metric representation) can be solved explicitly by demanding that 'r? a be 
represented as 

"iT ia = eib'rr ba (4.4) 

where -tr b~ is a symmetric matrix that can be analyzed using all the standard 
York technique (a "conformally invariant orthogonal decomposition of sym- 
metric tensors on Riemannian manifolds" into transverse traceless, longitudi- 
nal, and "trace" parts). 

3. The geometric information carried by the triad ~ is the same as that 
of the 3-metric, and is expressed as a combination of the conformal part and 
a common scale factor at each point. A rescaling of the triad matrix via 

ei,~ = d f (e i~ )ba~  ~ 

leads to the rescaling of the induced metric 

g,~b = t~4( gab)base 

(4.5) 

(4.6) 

just as in the standard York analysis of the metric representation. The base 
triad matrix (3 • 3 = 9 elements) is fixed via the choice of coordinatization 
on the initial hypersurface (three pieces of  information), choice of the triad 
orientation, or gauge (three more pieces of information), freely specifying 
two more pieces of information, and imposing the standard condition 

ebase = detl eia ) base = 1 (4.7) 

which, of course, implies 

= 2 = 1 (4.8) gbase d e t  I gab I base ~--- ebase 

as is required in the standard York metric analysis. 
The York solution of the initial-data problem in Ashtekar's variables 

proceeds as follows: first, we slice spacetime by the spacelike hypersurfaces 
of the constant extrinsic curvature and parametrize the slices by York's 
extrinsic time "r as in equation (2.4); then, on a given initial slice (determined 
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by the value of "r), we fix the base triad (eia)ba.~e a s  described above. Let us 
recall that the procedure of fixing the base triad includes specifying freely 
two pieces of information in it. 

The next step is to specify the initial values for "tr '~. After fixing the 
base triad and choosing 'rr i" according to (4.4) which satisfies automatically 
the gauge constraints (4.3), the remaining six pieces of information carried 
by the momenta are contained in 'rr ~b. Using the York slicing condition and 
time parametrization according to 

"r = -~Tr K = ~g-t/2Tr H = ~Tr I-lb~., e (4.9) 

we specify freely two pieces of information in the transverse traceless part 
"~'r "b [cf. equation (2.6)] of "rr "b, and solve three vector constraints with respect 
to the remaining three pieces of information contained in w,b in the standard 
York metric analysis. At this stage ax "b and (eia)base are completely determined. 
The last step involves using these parameters to form the standard York 
metric equation (2.9) for the scale factor and solving it, followed by recovering 
the final expression for the spacelike triad of the time-gauged tetrad according 
to (4.5) and its conjugate momentum according to (4.4). 

5. ALTERNATIVE C H O I C E S  OF  C A N O N I C A L  VARIABLES 

The choice of canonical variables in the time-gauged tetrad gravity used 
in the previous section is not the only one considered in the literature. Two 
examples of other choices are the variables (ff, ia, 2Ki ,  ) used by Henneaux e t  
al. (1989) in transition from variables of the previous section to Ashtekar 
variables, and the Ashtekar variables themselves. The variables (E'", 2Ki,,) 
are the densitized spacelike triad 

~i,, = v/~ g~beib (5.1) 

and 

gia --- eibgba -I- 1 ~ - 1 / 2 I  ~k a~ .'ik~ ,, (5.2) 

where Kb,, is the extrinsic curvature of the initial hypersurface. The new 
canonical variable 2Ki, is related to the momentum "rr i~ of the previous 
section by 

2Kia I - " _ .a_ t _- I/zr .k = v g l/2el~lTJc(ej,.gba ejbga,. -- ej,,gbc) -- V_S ~ik~,, (5.3) 

It is obvious that the procedure of the previous section will work virtually 
without changes for this new set of canonical variables, except that the 
rescaling relation (4.5) should be replaced by 

~_ia ,I,4[F_ia~ = v ~ )b,,e (5.4) 
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It is easy to see that in this setting the procedure remains practically 
unchanged for the Ashtekar variables themselves. The Ashtekar variables are 
the/~;~ and the complex Ashtekar connection 

i 
Ai~ = 2Ki~ + -  ~ijkoa~ k (5.5) 

2 

with 

1 r n ~ib~kc -I- ~ib~k ~ e k b e i c  .b i toik = -~ t ~;ab.c~ ~ ~ab.c ~ b , .  - -  - -  e k e b , a ]  (5.6) 

The curvature of the Ashtekar connection can be expressed as (Henneaux et  
al., 1989) 

i 1 
Fi~b = ~ caf(3Rca~b + 2Kc~ Kab)eif + -~ (Kcb,~ -- Kc,, b)ei C (5.7) 

with 

g, ab = Kibeia (5.8) 

These relations can be used to prove (Henneaux et al., 1989) that on the 
constraint surface Ji, = 0 the vector and Hamiltonian constraints derived 
from the variational principle in Ashtekar variables are equivalent to the 
constraints (2.1), (2.2) of tetrad gravity. This equivalence implies that the 
procedure described in the previous section can be simply transferred to 
Ashtekar's variables. With regard to the gauge constraint in the Ashtekar 
representation, the real part of it is satisfied trivially during the reduction 

jk  is procedure given by (4.4) and the imaginary part is a requirement that o~,, 
the Levi-Civita connection of the metric induced by the triad ei,,. In other 
words, York's procedure extends trivially and unchanged to Ashtekar's vari- 
ables. It is interesting that in the time-gauged tetrad setting York's procedure 
does not require any special effort to take care of the reality conditions. 
They are satisfied automatically if both the time gauge and conditions (4.4) 
are applied. 

6. DISCUSSION 

Our description of York's procedure for the initial-data problem in tetrad 
gravity shows that the procedure works for all kinds of canonical variables, 
including the Ashtekar connection variables. It works in tetrad gravity in 
about the same way as in the standard metric representation. This means that 
the York procedure can be used in tetrad gravity, which can be very efficient 
in investigating general theoretical issues, such as the existence and unique- 
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ness of the solution to the initial-value problem. However, in practice, in 
classical relativity this procedure does not make using tetrad variables more 
attractive than metric variables, as most of involved operations duplicate 
those of metric gravity. 

It might seem that there should be a way to take advantage of the special 
features of tetrad variables, especially in case of Ashtekar variables, where 
the constraints of the theory appear to be simple. The vector and Hamiltonian 
constraints are polynomial with respect to the densitized triad. The hope has 
been expressed that these special features might provide an opportunity to 
find a different way of solving the initial-value problem, which can offer 
advantages over York's approach, at least at some particular conditions. We 
will discuss only one such approach. The most comprehensive description 
of it was given by Capovilla et al. (1993). Their prescription goes, in a sense, 
in an opposite direction compared to that of York's procedure. Instead of 
solving the gauge constraints first, one starts from the vector and Hamiltonian 
constraints and, using the expansion of the densitized triad in a basis deter+ 
mined by the curvature of the Ashtekar connection, solves algebraically 
both these constraints. After that, the gauge constraints are imposed on the 
parameters of this algebraic solution and the problem is reduced to a system 
of nonlinear partial derivative equations of the first order. We do not reproduce 
here a detailed description of this procedure. It can be found in the paper 
referred to above. We wish only to note here that the conditions (4.4) are 
not satisfied in this approach, which means that, in addition to the Gauss, 
momentum, and Hamiltonian constraints, one has to impose the reality 
condition. 

The new procedure is interesting, but it has not been worked out to the 
same degree as York's approach. In particular, existence and uniqueness of 
the solution to the gauge constraints has not been investigated. The usual 
practice is to avoid an investigation of the general case and to impose instead 
additional restrictions, typically some assumptions of a symmetry in the hope 
of achieving better understanding of the difficulties. The slicing condition 
never has been discussed explicitly in connection with this new procedure. 
However, realizing the importance of this condition was crucial for the whole 
York undertaking. One might very well believe that the key to the eventual 
success of the alternative approach in Ashtekar variables of tetrad gravity 
could lie in finding an appropriate slicing condition and locating a natural 
class of spacetimes in which this approach could provide considerable advan- 
tages over York's procedure. This slicing condition cannot be found by 
imposing additional symmetries. Rather, as in the case of York's approach, 
it should be determined by the structure of the constraint equations. In other 
words, the whole program analogous to that associated with the York proce- 
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dure in metric gravity still awaits to be developed in Ashtekar connection 
variables, 

Concerning the issue of gravity quantization, at least if it is understood 
as the canonical quantization of  classical general relativity, a key ingredient 
of any successful procedure of quantization is the ability to single out the 
true dynamical degrees of  freedom (Kheyfets and Miller, 1995). It is clear 
from Sections 3 and 4 that such a goal can be achieved in the time-gauged 
tetrad variables as successfully as in the standard 3 + 1 split of  the metric 
variables via employing a slightly modified York procedure. It is also clear 
that, generally speaking, using the tetrad variables does not lead to any 
essential advantages except in situations where the nature of  the matter sources 
of the gravity field makes using tetrad variables mandatory or natural (as in 
the case of  the half-integer-spin matter fields). Alternative choices of  tetrad, 
or densitized tetrad, variables do not seem to give essential advantages in 
this direction. In particular, the connection variables seem to be ideally suited 
for handling the momentum constraints (diffeomorphic invariance), but are 
ill-suited for handling the scale factor. 

A C K N O W L E D G M E N T S  

For discussion, advice, or judgment  on one or another of  the issues 
taken up in this paper, we are indebted to Chris Fuchs, Ron Fulp, and 
Larry Shepley. 
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